Biosynthesis of eicosanoids and transcellular metabolism of leukotrienes in murine bone marrow cells

Miguel A. Gijón, Simona Zarini, and Robert C. Murphy¹

Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045-6511

Abstract Leukotriene B₄ (LTB₄) biosynthesis by polymorphonuclear leukocytes (PMNs) is an important factor of inflammatory responses. PMNs also release LTA₄, an unstable intermediate that can be taken up by neighboring cells and metabolized into LTC₄. Most studies of LT synthesis have been carried out using human PMNs, but very little information is available about mouse PMNs. Mouse bone marrow PMNs were found to synthesize eicosanoids upon stimulation with A23187, fMLP, or zymosan. The major eicosanoids produced are LTB₄ and 5-hydroxyeicosatetraenoic acid, with some nonenzymatic products of LTA₄ hydrolysis. No cysteinyl leukotrienes were produced, in contrast to what was observed with human blood neutrophil preparations. Human megakaryoblast-like MEG-01 cells synthesized thromboxane B₂ and prostaglandin E₂ in response to A23187 but produced no 5-lipoxygenase (5-LO)-derived eicosanoids. When mouse bone marrow cells (mBMCs) and MEG-01 cells were stimulated during coincubation, LTC₄ and LTD₄ were produced. Mouse peritoneal macrophages from 5-LO-deficient mice were able to synthesize LTC₄ when incubated with mBMCs from wild-type mice, demonstrating transcellular exchange of LTA₄ from mBMCs into murine peritoneal macrophages. These data demonstrate that murine bone marrow PMNs are a valid model for the study of LT biosynthesis, which now offers the possibility to investigate specific biochemical pathways through the use of transgenic mice.-Gijón, M. A., S. Zarini, and R. C. Murphy. Biosynthesis of eicosanoids and transcellular metabolism of leukotrienes in murine bone marrow cells. J. Lipid Res. 2007. 48: 716-725.

Supplementary key words murine neutrophils \bullet leukotriene $B_4 \bullet$ leukotriene $C_4 \bullet$ MEG-01 cells \bullet mass spectrometry

Leukotrienes (LTs) are derivatives of arachidonic acid (AA) that play a role in innate immune responses and are potent mediators of inflammation. They belong to a wider family of oxidized metabolites of AA collectively called eicosanoids, which also includes prostaglandins (PGs) and thromboxanes (TXs) (1). All of these lipids are rapidly synthesized in response to extracellular stimuli and act through specific receptors in a paracrine manner to signal a variety of responses. Effects of LTs include leukocyte chemotaxis, release of bactericidal compounds such as defensins and reactive oxygen species, release of cytokines, bronchoconstriction, and vasodilation. As a result, LTs are implicated in human clinical situations such as vascular disease and asthma (1, 2). Drugs that inhibit LT bio-synthesis (zileuton) (3) or antagonize LT receptors (montelukast, zafirlukast) (4) have been or are currently being used for the treatment of asthma.

Arachidonate esterified at the sn-2 position of phospholipids is the source of activation-induced substrate for LTs and other eicosanoid biosynthesis. AA is released upon hydrolysis catalyzed by phospholipases A₂, most commonly group IVA cytosolic phospholipase A_2 (cPLA₂ α), which exhibits a preference for AA-containing phospholipids and is rapidly activated in response to extracellular stimuli (5). Upon activation, in a calcium-dependent manner, cPLA₂α translocates from the cytosol to intracellular membranes that include the Golgi apparatus, the endoplasmic reticulum, and the nuclear envelope; at this location, it is in close proximity to some of the enzymes that use AA for eicosanoid biosynthesis. Cyclooxygenases (COX-1 and COX-2) are microsomal membrane proteins that catalyze the oxidation of AA to the endoperoxide PGH₂, which can then be enzymatically converted to biologically active eicosanoids, including PGD₂ (by the action of PGD₂ synthase), PGE₂ (by PGE₂ synthase), prostacyclin (PGI₂; by PGI₂ synthase), and TXA_2 (by TXA_2 synthase) (1). Alternatively, AA can be converted to LTs by 5-lipoxygenase (5-LO), functionally coupled to 5-LO-activating protein, an integral membrane protein present on the nuclear envelope that presents AA to 5-LO. Like cPLA₂ α , 5-LO translocates to the nuclear envelope upon cell activation (6) and catalyzes the formation of 5-hydroperoxyeicosatetraenoic acid and subsequently LTA₄. 5-HydroperoxyeicosatetraDownloaded from www.jlr.org by guest, on June 14, 2012

Manuscript received 30 November 2006 and in revised form 14 December 2006. Published, JLR Papers in Press, December 18, 2006. DOI 10.1194/jlr.M600508-JLR200

Abbreviations: AA, arachidonic acid; COX, cyclooxygenase; cPLA₂ α , cytosolic phospholipase A₂; cys-LT, cysteinyl leukotriene; 5-HETE, 5-hydroxyeicosatetraenoic acid; LC-MS/MS, liquid chromatography-tandem mass spectrometry; 5-LO, 5-lipoxygenase; LT, leukotriene; mBMC, mouse bone marrow cell; PG, prostaglandin; PMN, polymorphonuclear leukocyte; TX, thromboxane.

¹To whom correspondence should be addressed.

e-mail: robert.murphy@uchsc.edu

Copyright © 2007 by the American Society for Biochemistry and Molecular Biology, Inc.

enoic acid can be reduced by a peroxidase to form 5hydroxyeicosatetraenoic acid (5-HETE). LTA₄ is an unstable intermediate that can be enzymatically hydrolyzed by LTA₄ hydrolase to generate LTB₄ or conjugated with glutathione by LTC₄ synthase to generate LTC₄, which can be released and further metabolized extracellularly to LTD₄ and LTE₄. LTC₄, LTD₄, and LTE₄ are known collectively as cysteinyl leukotrienes (cys-LTs). LTA₄ in an aqueous environment is quickly and nonenzymatically degraded to Δ^6 -trans-LTB₄s or 5,6-diHETEs (7). In some cells, LTA₄ is converted to LTC₄ not by LTC₄ synthase but by microsomal glutathione Stransferase II (8).

Neutrophils, or polymorphonuclear leukocytes (PMNs), are essential cells in innate immune and inflammatory responses. They are usually the first cells to migrate out of the blood stream and into sites of inflammation, and they help control infection by phagocytizing microbes, by releasing toxic substances such as reactive oxygen species, enzymes (such as lysozyme or serine proteases) (9), or peptides (such as defensins) (10), and by producing mediators that help recruit other cells to the site, such as LTB₄ or cytokines such as interleukin-8 (11) or macrophageinflammatory proteins (12). Deficiencies in the number of circulating PMNs in the blood (neutropenia) are associated with increased risk of bacterial and fungal infection (13, 14). AA-containing phospholipids are abundant in intracellular membranes of PMNs (15), and PMNs are a major source of eicosanoids, particularly LTB₄, at sites of inflammation (16).

An interesting feature of the synthesis of LTs and other eicosanoids is the common occurrence of transcellular metabolism (17). Although many cells do not contain the complete enzyme cascade necessary to produce eicosanoids from phospholipids, it is possible for cells to produce and export intermediates that are taken up by neighboring cells for further metabolism. One example of this occurrence is the transfer of LTA₄ produced by PMNs into platelets, which are then able to produce LTC₄ (18).

The overwhelming majority of studies concerning the production of LTs by PMNs have been performed with human cells, undoubtedly because of the relevance to human pathophysiology but also because of the ability and relative ease of obtaining high numbers of cells from volunteers. However, the potential of using animal models in PMN research is indisputable. For instance, the mouse offers an enormous wealth of well-established models of human diseases and a constantly growing supply of transgenic animals that could provide unique genetic approaches to test specific biochemical pathways. Yet, the small yield of PMNs from mouse peripheral blood has slowed progress in the knowledge of mouse PMNs, their capacity to generate LTs, and fundamental studies of in vivo LT regulation using knockout mice. Recently, however, it has been reported that mouse bone marrow PMNs can be obtained in useful numbers that are functionally very similar to peripheral blood PMNs (19, 20). In this study, the synthesis of eicosanoids, both COX and 5-LO products, by mouse bone marrow PMNs from wild-type and knockout mice was examined in response to extracellular stimuli. Also, the ability to transfer LTA_4 from murine PMNs to a platelet-like cell line was tested. 5-LO knockout mice were used to establish, for the first time, the potential for PMN interaction with peritoneal macrophages to demonstrate transcellular biosynthesis between these two inflammatory cells.

EXPERIMENTAL PROCEDURES

Materials

Female 6–10 week old wild-type (C57BL/6J) and 5-LOdeficient (B6.129S2-Alox5^{tm1Fun}/J) mice were purchased from Jackson Laboratory (Bar Harbor, ME). Calcium ionophore A23187 and zymosan were purchased from Sigma-Aldrich (St. Louis, MO). Zymosan was prepared by boiling in phosphatebuffered saline, washing three times, and counting the particles with a phase-contrast microscope. Opsonized zymosan was prepared by incubating zymosan for 30 min at 37°C with fresh mouse serum. Percoll was obtained from Amersham Biosciences (Piscataway, NJ). Standard eicosanoids $[d_4]LTB_4$ (\geq 97 atom %D), $[d_8]5$ -HETE (\geq 98 atom %D), $[d_4]PGE_2$ (\geq 98 atom %D), $[d_4]PGE_2$ (\geq 98 atom %D), LTF₄, and LTA₄ methyl ester were purchased from Cayman Chemical (Ann Arbor, MI). LTA₄ free fatty acid was prepared by hydrolysis of the methyl ester in acetone/NaOH as described previously (21).

Cell isolation, culture, and stimulation

Human PMNs (hPMNs) were isolated from peripheral blood of healthy volunteers as described previously (22). Mouse bone marrow cells (mBMCs) were obtained from the femurs and tibias of mice as described previously (19). Briefly, legs were dissected from the animals, bones were cleaned, and marrows were flushed with HBSS without calcium, magnesium, bicarbonate, or phenol red (Mediatech, Inc., Herndon, VA) using a 25 gauge needle. After gently dislodging cell aggregates with a plastic Pasteur pipette, cells were washed twice in HBSS, resuspended in 3 ml of HBSS, and layered on top of a three-step Percoll gradient (3 ml each of 52, 64, and 72% Percoll in HBSS). After a 30 min centrifugation at 1,000 g, three distinct fractions of cells were observed at the 0-52, 52-64, and 64-72% interfaces. Cells were harvested and washed in Ca/Mg-free HBSS before stimulation. The 64-72% interface cells have been characterized as being 94-95% mature neutrophils (19, 20). As an alternative to the Percoll gradient, mBMCs were subjected to hypotonic lysis of red blood cells by resuspending in 1 ml of 34 mM sodium chloride, followed by the addition of 1 ml of 0.3 M sodium chloride/0.01 M sucrose and washing in Ca/Mg-free HBSS.

Human megakaryoblast-like MEG-01 cells were obtained from the American Type Culture Collection (Manassas, VA) and cultured in RPMI medium supplemented with 10% heat-inactivated fetal bovine serum and a penicillin/streptomycin solution.

Resident mouse peritoneal macrophages were obtained from peritoneal lavage as described previously (23), plated on tissue culture-treated 60 mm Petri dishes ($2-4 \times 10^6$ cells/dish), and kept in a 37°C incubator for 2 h before the experiment. Macrophages were then washed three times in Ca/Mg-free HBSS to remove nonadherent cells and stimulated as described below.

PMNs, mBMCs, and MEG-01 cells were washed and resuspended in Ca/Mg-free HBSS at a concentration of 1×10^6 cells/ml and stimulated with calcium ionophore A23187 (0.1–2 μ M, 10 min), fMLP (1 or 10 μ M, 10 min), or zymosan (30 particles/cell, 60 min) at 37°C, after addition of CaCl₂ (2 mM) and MgCl₂ (0.5 mM), in a total volume of 1 ml.

Reactions were terminated by the addition of ice-cold methanol (1 ml) containing 2 ng each of internal standards [d₄]LTB₄ and [d₈]5-HETE and 5 ng each of [d₄]TXB₂, [d₄]PGE₂, and LTF₄. The synthetic leukotriene LTF₄, which has never been reported to be present in biological samples, was used as an internal standard for cys-LTs. Samples were diluted with water to a final methanol concentration of <15% and then extracted using a solid-phase extraction cartridge (Strata C18-E, 100 mg/ml; Phenomenex, Torrance, CA). The eluate (1 ml of methanol) was dried down and solubilized in 40 µl of HPLC solvent A (8.3 mM acetic acid buffered to pH 5.7 with ammonium hydroxide) plus 20 µl of HPLC solvent B (acetonitrile-methanol, 65:35, v/v).

Eicosanoid measurements by reverse-phase HPLC and electrospray mass spectrometry

SBMB

JOURNAL OF LIPID RESEARCH

An aliquot of each sample (25 µl) was injected into a C18 HPLC column (Columbus 150 \times 1 mm, 5 μ m; Phenomenex) and eluted at a flow rate of 50 μ l/min with a linear gradient from 25% to 100% of HPLC solvent B, which was increased from 25% to 85% in 24 min, to 100% in 26 min, and held at 100% for a further 12 min. The HPLC system was directly interfaced into the electrospray source of a triple quadrupole mass spectrometer (Sciex API 3000; PE-Sciex, Thornhill, Ontario, Canada) for mass spectrometric analysis in the negative ion mode using multiple reaction monitoring of the specific transitions $m/z 319 \rightarrow 115$ for 5-HETE, $m/z 335 \rightarrow 195$ for LTB₄ and Δ^6 -trans-LTB₄s, $m/z 351 \rightarrow$ 195 for 20-OH-LTB₄, m/z 365 \rightarrow 195 for 20-COOH-LTB₄, m/z 335 \rightarrow 115 for 5,6-diHETEs, m/z 624 \rightarrow 272 for LTC₄, m/z 495 \rightarrow 177 for LTD₄, $m/z 438 \rightarrow 333$ for LTE₄, $m/z 351 \rightarrow 233$ for PGD₂, m/z $351 \rightarrow 271$ for PGE_2, m/z 369 \rightarrow 169 for TXB_2, m/z 327 \rightarrow 116 for $[d_8]$ 5-HETE, $m/z 339 \rightarrow 197$ for $[d_4]LTB_4$, $m/z 567 \rightarrow 171$ for LTF₄, m/z 373 \rightarrow 173 for [d₄]TXB₂, and m/z 355 \rightarrow 275 for [d₄]PGE₂. Quantitation was performed using standard isotope dilution as described previously (24).

RESULTS

Eicosanoid production by mouse bone marrow PMNs and hPMNs

The ability of human peripheral blood PMNs to synthesize LTs in response to extracellular stimuli has been studied for more than two decades (25). However, very little is known about eicosanoid synthesis by mouse neutrophils. A well-known stimulus of the cPLA₂ α /5-LO pathway, the calcium ionophore A23187 was initially examined to induce LT production in mBMCs. Incubation of mBMCs with 2 µM A23187 for 10 min resulted in the formation of different COX- and 5-LO-derived eicosanoids, as determined by online liquid chromatographytandem mass spectrometry (LC-MS/MS) techniques (Fig. 1). mBMCs were isolated from femurs and tibias and subjected to density gradient centrifugation. Previous studies had separated cells into bands based on Percoll concentration. The top band (band 1, 0-52% Percoll) contained mononuclear-like cells, the second band (band 2, 52-64% Percoll) was a mixture of mature and immature neutrophils, and the third band (band 3, 64–72% Percoll) was >95% mature neutrophils (19). Although the level of TXB₂ production was similar in these fractionated bone marrow cells, 5-LO products were abundantly synthesized by band 2 (Fig. 1B) and band 3 (Fig. 1C) cells. Δ^6 -Trans-

LTB₄ and 5,6-diHETE isomers (data not shown), which are nonenzymatic derivatives of LTA₄, were also present in band 2 and band 3. The unseparated mixture of mBMCs showed a very similar eicosanoid profile to the two denser fractions (Fig. 1D) and for this reason was used in all subsequent experiments. The production of eicosanoids from hPMNs stimulated with A23187 is shown for comparison (Fig. 1E).

The quantities of LTB_4 and 5-HETE produced by A23187-stimulated mBMCs were similar to those produced by hPMNs (Table 1). hPMNs synthesized much lower amounts of TXB₂ and PGE₂ than mBMCs. As reported previously (22), hPMNs did produce detectable levels of LTC₄, possibly because of contamination with eosinophils, and significant quantities of 20-OH-LTB₄ (Fig. 1E), an ω -oxidation derivative of LTB₄ mediated by CYP4F4 (26). This P450 metabolite of LTB₄ was completely absent in the stimulated mBMC incubation (Fig. 1A-D).

Quantitative comparison of the production of 5-LOderived eicosanoids by hPMNs and mBMCs (Table 1), as determined by LC-MS/MS and the corresponding standard isotope dilution curves, revealed remarkable similarities in 5-LO pathway activation. Eicosanoid production by mBMCs could also be initiated by the formylated peptide fMLP and the phagocytic stimulus zymosan, coated (opsonized) or uncoated with complement fragments (Table 1). The concentration of fMLP necessary to trigger a robust synthesis of LTs was 10 µM, significantly higher than that observed for hPMNs (0.1 µM) (22), suggesting lower expression of the formylated peptide receptor in less mature PMNs. This was consistent with recent findings that a concentration as high as 10 µM fMLP is necessary for full superoxide production and primary granule release by mouse bone marrow PMNs (20).

LT production by mBMCs induced by A23187 was timeand dose-dependent (Fig. 2), with maximal effects observed at 0.5 µM and 10 min. These incubation conditions were used in all subsequent experiments with calcium ionophore.

Eicosanoid production and LTA₄ intake by MEG-01 cells

It is known that human platelets are able to capture LTA_4 produced by PMNs and use it to synthesize LTC_4 , thus providing a source of this biologically active cys-LT (18). We tested mBMCs for the ability to transfer LTA_4 to other cells. As an acceptor cell, we tested the human megakaryoblastic cell line MEG-01. These cells have been shown to shed particles morphologically similar to platelets, express cPLA₂ and TXA₂ synthase, and release AA in response to A23187 (27, 28). On the other hand, the use of this cell line helps circumvent some of the problems associated with the use of primary platelets, mainly aggregation during isolation. Upon stimulation with 0.5 µM A23187 for 10 min (Fig. 3A), MEG-01 cells produced TXB₂ and PGE₂ but not 5-LO-derived eicosanoids. None of these eicosanoids was detected in nonstimulated, control cells (data not shown). When LTA₄ was added to the incubation medium of nonstimulated MEG-01 cells, LTB₄ and LTC₄ were produced (Fig. 3B), indicating that, like plate-

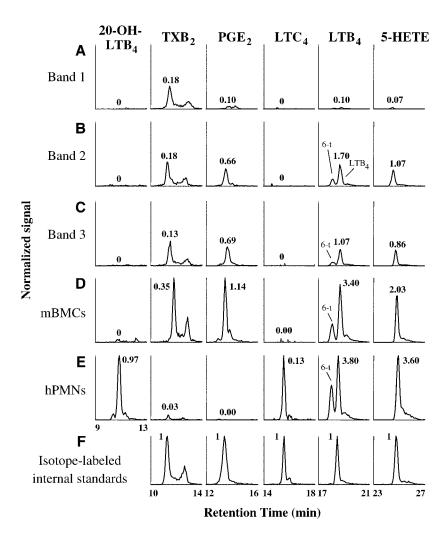


Fig. 1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of eicosanoids produced by A23187-stimulated cells. Mouse bone marrow cells (mBMCs) separated according to their density on a Percoll gradient were stimulated for 10 min at 37°C with 2 μM A23187: band 1, 0–52% fraction (A); band 2, 52-64% fraction (B); band 3, 64-72% fraction (C). The complete mixtures of isolated mBMCs (D) and human peripheral blood polymorphonuclear leukocytes (hPMNs) (E) were stimulated under identical conditions. In all cases, 1×10^6 cells were used and eicosanoids were identified by their HPLC retention times and by specific collision-induced mass transitions in LC-MS/MS experiments, as detailed in Experimental Procedures. F: The ion intensity for each eicosanoid (column) is normalized to the deuterium-labeled internal standards as 1.0. Thromboxane B_2 (TXB₂) emerged from the reverse-phase HPLC column as two interconverting ring-opened and ring-closed forms. The two HPLC peaks in the leukotriene B₄ (LTB₄) column correspond to Δ^6 -trans-LTB₄ isomers (6-t) and LTB₄. 5-HETE, 5-hydroxyeicosatetraenoic acid; PGE₂, prostaglandin E₂.

lets, these cells possess mechanisms to take up and stabilize exogenous LTA₄ for transcellular biosynthesis of cys-LTs, and they express LTC₄ synthase. Unlike platelets, however, MEG-01 cells also express LTA₄ hydrolase, because they are able to synthesize LTB₄ from exogenous LTA₄.

Transcellular synthesis of cys-LTs in mBMC/MEG-01 mixtures

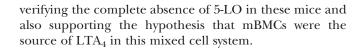
When MEG-01 cells and mBMCs were incubated together in the presence of A23187 (Fig. 4), all eicosanoids produced by either cell alone were observed, as well as a new component corresponding to LTC₄ and a smaller peak corresponding to LTD₄ (based on mass spectrometric criteria). These cys-LTs were absent when both types of cells were incubated separately (Figs. 1, 3), providing evidence that LTA₄ generated in mBMCs, most likely mature PMNs, was transported into MEG-01 cells and used as a substrate for MEG-01 LTC₄ synthase. When the number of MEG-01 cells in the coincubation experiment was varied relative to number of mBMCs, the amount of LTC₄ produced correlated with the number of MEG-01 cells (Fig. 5), suggesting that the amount of LTC₄ synthase in the acceptor cell was the limiting factor for transcellular LTC₄ synthesis under these conditions.

The transfer of LTA₄ between mBMCs and MEG-01 cells, as determined by the synthesis of LTC₄, also occurred when opsonized zymosan was used as a stimulus (Fig. 6), demonstrating that the phenomenon of transcel-

TABLE 1. Quantitation of LTB₄, LTC₄, and 5-HETE produced by stimulated mBMCs or hPMNs

Sample	LTB_4	5-HETE	LTC_4
		ng/10 ⁶ cells	
mBMCs			
Unstimulated	0.00 ± 0.00	0.01 ± 0.00	n.d.
A23187 (2 μM)	1.01 ± 0.16	2.71 ± 0.33	0.01 ± 0.00
hPMNs			
A23187 (2 μM)	1.04 ± 0.24	4.03 ± 0.54	0.44 ± 0.16
mBMCs			
Nonopsonized zymosan	0.14 ± 0.05	0.25 ± 0.09	n.d.
Opsonized zymosan	0.19 ± 0.05	0.42 ± 0.08	n.d.
$fMLP (10^{-6} M)$	0.02 ± 0.01	0.07 ± 0.02	n.d.
$fMLP (10^{-5} M)$	0.20 ± 0.05	0.52 ± 0.08	n.d.

5-HETE, 5-hydroxyeicosatetraenoic acid; hPMN, human peripheral blood polymorphonuclear leukocyte; LT, leukotriene; mBMC, mouse bone marrow cell; n.d., not detected. mBMCs and hPMNs (1 × 10⁶ cells) were stimulated with 2 μ M A23187 (10 min), 10⁻⁵ or 10⁻⁶ M fMLP (10 min), or 30 particles of nonopsonized or opsonized zymosan per cell (60 min). LTB₄, LTC₄, and 5-HETE were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and quantitated by standard isotope dilution. Values shown are averages ± SEM (n = 3).


BMB

OURNAL OF LIPID RESEARCH

lular metabolism may also play a role during physiological, phagocytic stimulation of mouse PMNs in the presence of other cells. Under these experimental conditions, LTD_4 was detected at higher levels compared with LTC_4 (**Table 2**). This may be attributable simply to the longer incubation time required for zymosan stimulation (1 h). An unexpected observation was the marked decrease in 5-HETE production in mBMC/MEG-01 cell mixtures compared with mBMCs alone (data not shown).

Absence of transcellular cys-LT production in 5-LO-null mBMC/MEG-01 cell mixtures

Mice with a targeted disruption of the gene encoding 5-LO were generated in 1994 (29), providing a very useful model to study the roles of LTs in models of disease. We tested mBMCs from these transgenic mice as a negative control in the transfer of LTA₄ to MEG-01 cells. When mBMCs from these animals were stimulated with A23187 (**Fig. 7A**), there was increased production of the COX-derived eicosanoids TXB₂ and PGE₂, like their wild-type counterparts, indicating an intact ability to stimulate cPLA₂ α and release free arachidonate. However, as expected, none of the products of 5-LO were detected. When cells were coincubated with MEG-01 cells and stimulated with A23187 (Fig. 7B), no LTC₄ or LTD₄ was detected,

Transcellular production of LTC₄ in mixtures of mBMCs and mouse peritoneal macrophages

Interactions between PMNs and macrophages are understood to be an important part of the inflammatory response. Both types of cells are known sources of LTs: LTB₄ in the case of PMNs and LTC4 in the case of resident peritoneal macrophages. Because of the ability of these cells to synthesize the final products of their LT synthesis pathways, transcellular exchange of LTA₄ has not been reported. We tested this possibility by using peritoneal macrophages from 5-LO-deficient mice as potential acceptor cells. Wild-type mouse peritoneal macrophages produced TXB₂ and PGE₂ as well as LTC₄, 5-HETE, and low levels of LTB_4 when stimulated with 2 μ M A23187 (data not shown). As expected, macrophages from 5-LOdeficient mice showed no detectable 5-LO products but retained the ability to synthesize TXB_2 and PGE_2 (**Fig. 8A**). In fact, these prostanoids were produced at higher levels than in wild-type macrophages (data not shown), suggesting that the absence of 5-LO provided more AA to the COX pathway. When mBMCs from wild-type mice were coincubated with 5-LO-deficient peritoneal macrophages in the presence of A23187 (Fig. 8B), LTB₄ and LTC₄ became abundant 5-LO products, providing evidence that macrophages are able to synthesize LTC₄ by using LTA₄ from surrounding PMNs, a situation that conceivably could occur at sites of inflammation.

DISCUSSION

In spite of extensive interest in neutrophil biochemistry, very few studies have been performed on PMNs from sources other than human peripheral blood, particularly from the standpoint of arachidonate metabolism. Because PMNs originate and mature in the bone marrow before being released into the vasculature, bone marrow is a good source of these cells. It has been reported that human bone marrow PMNs are morphologically similar to peripheral blood PMNs, that they are able to phagocytize opsonized Oil Red O lipopolysaccharide particles, and that they respond to the bacterial peptide fMLP or the protein kinase C activator phorbol

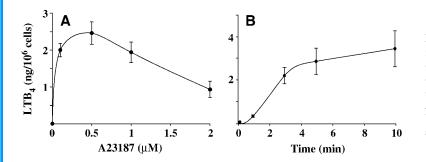
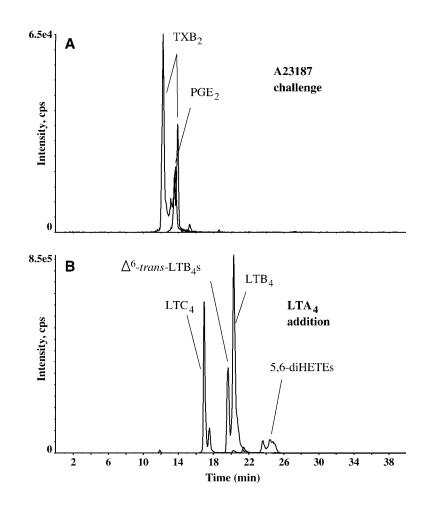



Fig. 2. Dose response and time course of A23187induced LTB₄ synthesis by mBMCs. A: mBMCs $(1 \times 10^6$ cells) were stimulated for 10 min at 37°C with the indicated concentrations of A23187. B: Cells were incubated with 0.5 μ M A23187 for the times indicated. After incubation, LTB₄ was analyzed and quantified by LC-MS/MS and standard isotope dilution. Results shown are averages \pm SEM (n = 3).

ASBMB

JOURNAL OF LIPID RESEARCH

Fig. 3. Analysis of eicosanoids produced by MEG-01 cells stimulated with A23187 or incubated with exogenous LTA₄. MEG-01 cells (1×10^6) were incubated for 10 min at 37°C with 0.5 μ M A23187 (A) or with 1 μ M LTA₄ (B). Eicosanoids were analyzed by LC-MS/MS. Ion intensity is expressed as counts per second (cps). Responses for deuterium-labeled internal standards were identical (not shown).

myristate acetate by producing superoxide, although to a lesser extent than peripheral blood PMNs (30). A recent study with mouse bone marrow PMNs reported superoxide production in response to phorbol myristate acetate to a similar extent than in mouse peripheral blood PMNs, but significantly less than in mouse thioglycolateelicited peritoneal PMNs (19). Both superoxide production and degranulation have been observed in mouse bone marrow PMNs treated with fMLP and the immunostimulatory peptide WKYMVm-NH₂ (20, 31). These data demonstrate that bone marrow PMNs exhibit at least some of the functional responses of circulating PMNs

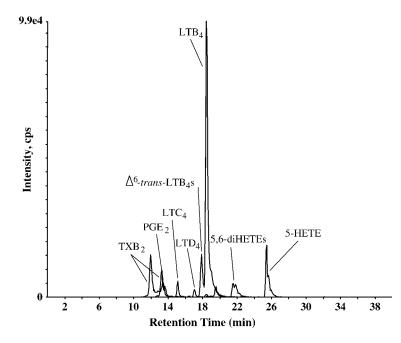


Fig. 4. Transcellular synthesis of LTC₄ in mixtures of mBMCs and MEG-01 cells stimulated with A23187. Mixtures of mBMCs (1×10^6) and MEG-01 cells (1×10^6) were incubated for 10 min at 37°C with 0.5 μ M A23187. Eicosanoids were analyzed by LC-MS/MS. Ion intensity is expressed as counts per second (cps). Responses for deuterium-labeled internal standards for each eicosanoid are not shown.

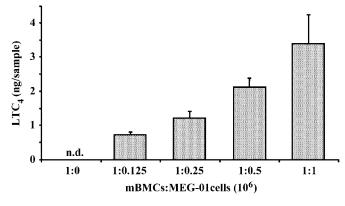


Fig. 5. Effects of the number of MEG-01 cells on the transcellular synthesis of LTC₄ in mixtures with mBMCs stimulated with A23187. mBMCs (1×10^6) were incubated with the indicated numbers of MEG-01 cells for 10 min at 37°C with 0.5 μ M A23187. Eicosanoids were analyzed by LC-MS/MS, and LTB₄ was quantitated by standard isotope dilution. Results shown are averages \pm SEM (n = 3). n.d., not detected.

and that PMNs display quantitatively different properties according to their maturation state.

Our experimental results provide evidence that mouse bone marrow PMNs are able to synthesize TXB_2 , PGE_2 , and LTB_4 when exposed to calcium ionophore A23187 or to physiological stimuli such as fMLP or the phagocytic stimulus zymosan. To our knowledge, this is the first report of eicosanoid production induced in bone marrow PMNs, and it is consistent with published results showing that other murine hematopoietic cells, such as the mouse thioglycolate-induced peritoneal PMNs, release PGE₂ and LTB₄ upon incubation with rickettsiae, the bacterial cause of typhus in humans (32). In both purified bone marrow PMNs and mBMCs, LTB₄ and 5-HETE were found to be

TABLE 2. Quantitation of LTC₄ and LTD₄ produced by mBMCs and MEG-01 cells stimulated with A23187 or zymosan

LTC ₄	LTD_4
ng/samp	le
3.39 ± 0.85	$0.53 \pm 0.12 \\ 0.21 \pm 0.05$
	ng/sampl

MEG-01 cells (1×10^6) were incubated with mBMCs (1×10^6) and stimulated with 0.5 μ M A23187 (10 min) or 30 particles of opsonized zymosan per mBMC (60 min). LTC₄ and LTD₄ were analyzed by LC-MS/MS and quantitated by standard isotope dilution. Values shown are averages \pm SEM (n = 3).

synthesized at very similar levels as that in hPMNs, but PGE_2 and TXB_2 were produced in relatively higher amounts, indicating possible higher expression of COX or contamination of these cells with other COX-expressing cells. In contrast, although hPMN preparations showed reproducible synthesis of LTC_4 , most likely as a result of contamination with eosinophils, this cys-LT was completely below detection levels in bone marrow PMNs under these experimental conditions.

The absence of LTC₄ background in mBMCs makes this an excellent cell preparation for studies of the transcellular transfer of LTA₄ to LTC₄ synthase-expressing cells. Transcellular metabolism of eicosanoids is a common mechanism for LT biosynthesis, and PMNs have been shown to synthesize and transfer LTA₄ to cells that are able to synthesize other LTs, such as red blood cells (LTB₄), endothelial cells (LTC₄), and platelets (LTC₄) (17). An elegant study involving bone marrow chimeras of 5-LO- and LTA₄ hydrolase-deficient mice has provided unequivocal evidence that transcellular synthesis of LTB₄ occurs in vivo during zymosan-induced peritonitis and AA-induced acute skin inflammation, thus illustrating

SBMB

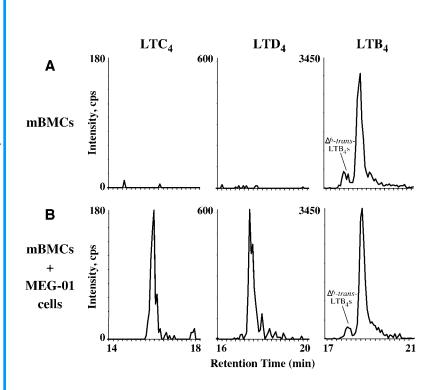


Fig. 6. Transcellular synthesis of LTC₄ in mixtures of mBMCs and MEG-01 cells stimulated with opsonized zymosan. mBMCs (1×10^6) were incubated without (A) or with (B) 1×10^6 MEG-01 cells and 3×10^7 particles of opsonized zymosan for 1 h at 37°C. Eicosanoids were analyzed by LC-MS/MS. Ion intensity is expressed as counts per second (cps). Responses for deuterium-labeled internal standards are not shown.

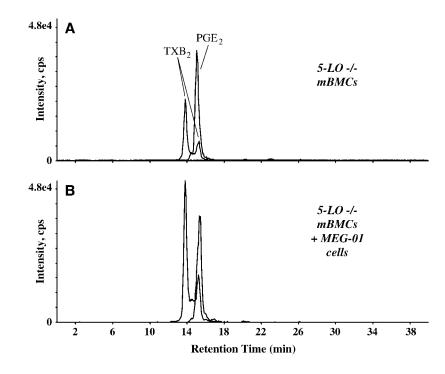
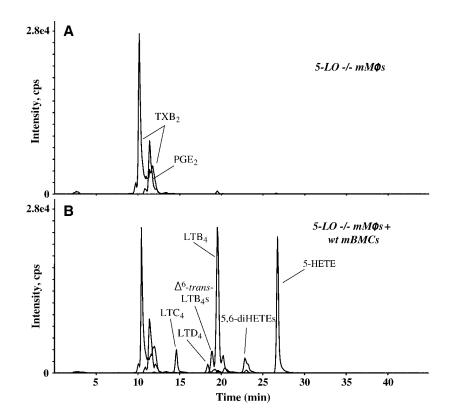


Fig. 7. Effects of A23187 on eicosanoid synthesis by mBMCs from 5-lipoxygenase (5-LO)-deficient mice. mBMCs (1×10^6) from 5-LO-deficient mice were incubated for 10 min at 37°C with 0.5 μ M A23187 in the absence (A) or presence (B) of 1×10^6 MEG-01 cells. Eicosanoids were analyzed by LC-MS/MS. Ion intensity is expressed as counts per second (cps). Responses for deuterium-labeled internal standards are not shown.


the biological relevance of this phenomenon (33). When mBMCs were incubated with platelet-like MEG-01 cells and then challenged with A23187, transcellular synthesis of LTC₄ was detected, and even with the relatively low amounts of LTA₄ produced by zymosan-treated mBMCs, transcellular LTC₄ could be observed. LTC₄ production correlated with the number of MEG-01 cells present, as has been observed in experiments with human PMNs

SBMB

JOURNAL OF LIPID RESEARCH

and platelets stimulated with A23187 (18) or opsonized zymosan (34).

The 5-LO-deficient mouse model has been studied extensively and has revealed interesting aspects of the biology of LTs. In these transgenic mice, no LT production was observed in in vivo models of inflammation or in primary cells, such as alveolar and peritoneal macrophages and bone marrow-derived mast cells (35). As expected, our

Fig. 8. Transcellular synthesis of LTC₄ in mixtures of mBMCs and peritoneal macrophages. Mouse peritoneal macrophages (mM Φ s; 2×10^6) from 5-LO-deficient mice were incubated in the absence (A) or presence (B) of mBMCs (1×10^6) from wild-type mice for 10 min at 37°C with 2 μ M A23187. Eicosanoids were analyzed by LC-MS/MS. Ion intensity is expressed as counts per second (cps). Responses for deuterium-labeled internal standards are not shown.

experiments confirmed the absence of LT production in 5-LO-deficient mBMCs and in peritoneal macrophages stimulated with A23187, whereas the ability to synthesize TXB₂ and PGE₂ was not impaired. Because of the central role of PMNs in inflammation, this lack of LT production helps explain the reduced signs of inflammation that 5-LO-deficient mice present under certain experimental conditions (36). It is interesting that although LTC_4 synthesis was impaired by the lack of 5-LO in peritoneal macrophages, these cells retained expression of LTC₄ synthase, as demonstrated by their ability to use PMNproduced LTA₄ to generate LTC₄. This observation extends the examples of the transcellular metabolism of LTs by including two of the main cellular components of inflammatory responses. The fact that this particular transcellular exchange would have been much more difficult to detect with human primary cells also highlights the usefulness of mBMCs in PMN research, especially regarding LT synthesis.

In summary, these results describe and characterize for the first time a useful model for the study of LT biosynthesis in mouse PMNs. This will now make it possible to use the increasing number of transgenic animals involving genes relevant to the synthesis and metabolism of LTs and other eicosanoids, as well as animal models of inflammation and disease. Such studies have not been feasible previously because of the enormous difficulty of obtaining peripheral blood PMNs in sufficient numbers from mice. Additionally, these data also validate the use of MEG-01 cells as acceptor cells in the transcellular biosynthesis of LTs, avoiding the difficulties associated with the use of platelets from human donors.

This work was supported in part by a grant from the National Institutes of Health (HL-25785). The authors thank Scott Young, Dr. Annemie Van Linden, and Dr. Scott Worthen for their technical advice on the preparation of mBMCs.

REFERENCES

- Smith, W. L., and R. C. Murphy. 2002. The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways. *In* Biochemistry of Lipids, Lipoproteins and Membranes. D. E. Vance and J. E. Vance, editors. Elsevier Science, New York. 341–371.
- Funk, C. D. 2005. Leukotriene modifiers as potential therapeutics for cardiovascular disease. *Nat. Rev. Drug Discov.* 4: 664–672.
- Dahlen, S. E. 2006. Treatment of asthma with antileukotrienes: first line or last resort therapy? *Eur. J. Pharmacol.* 533: 40–56.
- Apter, A. J., and S. J. Szeffer. 2004. Advances in adult and pediatric asthma. J. Allergy Clin. Immunol. 113: 407–414.
- Leslie, C. C. 2004. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A₂. *Prostaglandins Leukot. Essent. Fatty Acids.* **70**: 373–376.
- Luo, M., S. M. Jones, M. Peters-Golden, and T. G. Brock. 2003. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B₄ synthetic capacity. *Proc. Natl. Acad. Sci. USA.* 100: 12165–12170.
- Fitzpatrick, F. A., D. R. Morton, and M. A. Wynalda. 1982. Albumin stabilizes leukotriene A₄. J. Biol. Chem. 257: 4680–4683.
- 8. Jakobsson, P.J., J. A. Mancini, and A. W. Ford-Hutchinson. 1996. Identification and characterization of a novel human micro-

somal glutathione S-transferase with leukotriene C_4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C_4 synthase. *J. Biol. Chem.* **271**: 22203–22210.

- 9. Nagata, M. 2005. Inflammatory cells and oxygen radicals. *Curr. Drug Targets Inflamm. Allergy.* **4:** 503–504.
- Laube, D. M., S. Yim, L. K. Ryan, K. O. Kisich, and G. Diamond. 2006. Antimicrobial peptides in the airway. *Curr. Top. Microbiol. Immunol.* 306: 153–182.
- Kasama, T., Y. Miwa, T. Isozaki, T. Odai, M. Adachi, and S. L. Kunkel. 2005. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. *Curr. Drug Targets Inflamm. Allergy.* 4: 273–279.
- Chung, K. F. 2006. Cytokines as targets in chronic obstructive pulmonary disease. *Curr. Drug Targets.* 7: 675–681.
- Boxer, L., and D. C. Dale. 2002. Neutropenia: causes and consequences. Semin. Hematol. 39: 75–81.
- Vento, S., and F. Cainelli. 2003. Infections in patients with cancer undergoing chemotherapy: aetiology, prevention, and treatment. *Lancet Oncol.* 4: 595–604.
- MacDonald, J. I., and H. Sprecher. 1989. Distribution of arachidonic acid in choline- and ethanolamine-containing phosphoglycerides in subfractionated human neutrophils. *J. Biol. Chem.* 264: 17718–17726.
- Chen, M., B. K. Lam, Y. Kanaoka, P. A. Nigrovic, L. P. Audoly, K. F. Austen, and D. M. Lee. 2006. Neutrophil-derived leukotriene B₄ is required for inflammatory arthritis. *J. Exp. Med.* 203: 837–842.
- Folco, G., and R. C. Murphy. 2006. Eicosanoid transcellular biosynthesis: from cell-cell interactions to *in vivo* tissue responses. *Pharmacol. Rev.* 58: 375–388.
- 18. Maclouf, J. A., and R. C. Murphy. 1988. Transcellular metabolism of neutrophil-derived leukotriene A_4 by human platelets. A potential cellular source of leukotriene C_4 . *J. Biol. Chem.* **263**: 174–181.
- Suratt, B. T., S. K. Young, J. Lieber, J. A. Nick, P. M. Henson, and G. S. Worthen. 2001. Neutrophil maturation and activation determine anatomic site of clearance from circulation. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 281: L913–L921.
- Boxio, R., C. Bossenmeyer-Pourie, N. Steinckwich, C. Dournon, and O. Nusse. 2004. Mouse bone marrow contains large numbers of functionally competent neutrophils. *J. Leukoc. Biol.* 75: 604–611.
- Dickinson-Zimmer, J. S., D. F. Dyckes, D. A. Bernlohr, and R. C. Murphy. 2004. Fatty acid-binding proteins: stabilization of leukotriene A₄ and competition with arachidonic acid. *J. Lipid Res.* 45: 2138–2144.
- Zarini, S., M. Gijon, G. Folco, and R. C. Murphy. 2006. Effect of arachidonic acid reacylation on leukotriene biosynthesis in human neutrophils stimulated with GM-CSF and fMLP. *J. Biol. Chem.* 281: 10134–10142.
- Qiu, Z. H., M. S. de Carvalho, and C. C. Leslie. 1993. Regulation of phospholipase A₂ activation by phosphorylation in mouse peritoneal macrophages. *J. Biol. Chem.* 268: 24506–24513.
- Hall, L. M., and R. C. Murphy. 1998. Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. J. Am. Soc. Mass Spectrom. 9: 527–532.
- Borgeat, P., and B. Samuelsson. 1979. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. *Proc. Natl. Acad. Sci. USA.* 76: 2148–2152.
- 26. Christmas, P., K. Tolentino, V. Primo, K. Zemski-Berry, R. C. Murphy, M. Chen, D. M. Lee, and R. J. Soberman. 2006. CYP4F18 is the LTB₄ ω -1/ ω -2 hydroxylase in mouse polymorphonuclear leukocytes: identification as the functional orthologue of human PMN CYP4F3A in the down regulation of responses to LTB₄. *J. Biol. Chem.* **281**: 7189–7196.
- Takeuchi, K., M. Satoh, H. Kuno, T. Yoshida, H. Kondo, and M. Takeuchi. 1998. Platelet-like particle formation in the human megakaryoblastic leukaemia cell lines, MEG-01 and MEG-01s. Br. J. Haematol. 100: 436–444.
- Matijevic-Aleksic, N., S. K. Sanduja, L. H. Wang, and K. K. Wu. 1995. Differential expression of thromboxane A synthase and prostaglandin H synthase in megakaryocytic cell line. *Biochim. Biophys. Acta.* 1269: 167–175.
- Chen, X. S., J. R. Sheller, E. N. Johnson, and C. D. Funk. 1994. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. *Nature*. 372: 179–182.

OURNAL OF LIPID RESEARCH

- Berkow, R. L., and R. W. Dodson. 1986. Purification and functional evaluation of mature neutrophils from human bone marrow. *Blood.* 68: 853–860.
- Boxio, R., C. Bossenmeyer-Pourie, R. Vanderesse, C. Dournon, and O. Nusse. 2005. The immunostimulatory peptide WKYMVm-NH activates bone marrow mouse neutrophils via multiple signal transduction pathways. *Scand. J. Immunol.* 62: 140–147.
- Walker, T. S., and C. S. Hoover. 1991. Rickettsial effects on leukotriene and prostaglandin secretion by mouse polymorphonuclear leukocytes. *Infect. Immun.* 59: 351–356.
- Fabre, J. E., J. L. Goulet, E. Riche, M. Nguyen, K. Coggins, S. Offenbacher, and B. H. Koller. 2002. Transcellular biosynthesis

ASBMB

JOURNAL OF LIPID RESEARCH

contributes to the production of leukotrienes during inflammatory responses *in vivo. J. Clin. Invest.* 109: 1373–1380.34. Maclouf, J., R. C. Murphy, and P. M. Henson. 1990. Transcellu-

- 34. Maclouf, J., R. C. Murphy, and P. M. Henson. 1990. Transcellular biosynthesis of sulfidopeptide leukotrienes during receptormediated stimulation of human neutrophil/platelet mixtures. *Blood.* 76: 1838–1844.
- Funk, C. D., and X. S. Chen. 2000. 5-Lipoxygenase and leukotrienes. Transgenic mouse and nuclear targeting studies. *Am. J. Respir. Crit. Care Med.* 161 (Suppl.): S120–S124.
- Funk, C. D., X. S. Chen, E. N. Johnson, and L. Zhao. 2002. Lipoxygenase genes and their targeted disruption. *Prostaglandins* Other Lipid Mediat. 68–69: 303–312.